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Problem overview

In Robust Optimisation Problems the Quantity of Interest (QoI) is a statistical measure.
Increase the number of function evaluations, generally expensive: e.g. CFD
evaluations for Aerodynamic Design Problems.
An optimum design less vulnerable to different sources of uncertainty is found.

Geometrical uncertainties: Manufacturing Tolerances, icing or fatigue of the material.
Operational uncertainties: Mach number (M) or Angle of Attack (α).
Model uncertainties (epistemic): lack of knowledge about some physical aspects that the
model tries to reproduce.

Therefore, Robust optimization is a very promising field, BUT a limit exist:
computationally expensive!

OBJECTIVE: investigate mixing of intrusive and non-intrusive methods for risk
measure approximation to reduce the CPU time.
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Problem overview

So, for robust aerodynamic shape design fhow can we reduce the computational cost?

Speeding up the CFD evaluations.

Approximating the statistical measure.
→ Surrogate Models (Gaussian Processes) — non-intrusive approach.
→ Using the RANS adjoint solution — intrusive approach.

- I order approximation: Gradient calculation.
- II order approximation: Hessian Matrix calculation.

→ Hybridize intrusive and non-intrusive approaches.
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Deterministic Optimization Problem

Optimization problems are mathematically defined using the minimization formulation.





min
w∈S

f (w)
s.to :

ci (w) ≤ 0 i = 1, . . . ,m
S ⊆ Rn

Objective function: f (w)
Design variables: w
Constraint functions: ci (w)
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Robust Optimization Problem

It offers an optimal design less vulnerable to sources of uncertainty.

Unknown or future states → introduce random
variables X .





min
w∈S

f (w,X )
s.to :

ci (w,X ) ≤ 0 i = 1, . . . ,m
S ⊆ Rn

Objective and constraints are now functions.
Remapped into real numbers.

f(  )

X

X

uncertainty of 
design variable

Det. Opt Rob. Opt

Several approaches are possible, but here Risk measures are used.
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Stochastic optimisation

It offers an optimal design less vulnerable to sources of uncertainty (geometrical and
operational uncertainties are here considered).

Unknown or future states may be taken into account introducing (real-valued) random
variables X . 




min
w∈S

f (w,X )
s.to :

ci (w,X ) ≤ 0 i = 1, . . . ,m
S ⊆ Rn

Objective and constraints are now functions. So we have to find a way to recast the
problem into an optimisation one.
Several approaches are possible, but here Risk measures are used.
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Optimisation of Risk Measures

We measure risk introducing a generic risk function R(X ) and agreeing on a level of risk that
we consider acceptable, bearing in mind that there will inevitably be adverse events

R(X ) ≤ C

Hence we can write 



min
z∈S

R0(f (z,X ))
s.to :

Ri (f (z,X )) ≤ 0 i = 1, . . . ,m
S ⊆ Rn

Note that sup can also be considered a risk function with special requirements for its
computation
Here, CVaR is used.
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Risk Measures for RDO

Which kind of Statistical Measures can be used? → Risk measures.

• Classical approach: based on the mean (µ), standard deviation (σ), or combination of both
(µ+ σ).

→ Penalise all the configurations that are far from the mean value.
→ Example: considering we want to minimize the drag coefficient, Cd , these measures will

penalize the configurations that will provide a decrease on drag in the same way than the
configurations that will increase it.

→ But, we only want to penalize configurations that produce an increase on it → Statistical
measure that works asymmetrically needed!
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Cumulative Distribution Function =⇒ Risk Functions

CDF gives the area under the probability
density function from minus infinity to x .
FZ (z) = P(Z ≤ z), is the probability that
Z takes on a value ≤ z .
VaR Minimum value of z that makes
the CDF of Z to be greater than or
equal to a confidence level α.
It is the maximum loss that can be
exceeded only in (1− α)100% of cases.
CVaR can be though as a weighted
average between α-VaR and the losses
exceeding it.
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Aerodynamic Design Optimisation ‘toy’ problem

Baseline Airfoil: NACA 2412
Working conditions:

- M∞ = 0.0
- Re = 5 × 105

- Cl = 0.5
Flow solver: XFOIL
20 design variables, w




min
w

Cd(w)
subject to:

Cl = 0.5
t/c = 0.12
XTRLOW ≤ 0.95c
TEA ≥ 13◦

LER ≥ 0.007c

x/c

y
/c
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Cd × 104 α

NACA 2412 0.007266 2.411
Deterministic Opt. 0.005997 1.742

17.5% drag reduction
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Aerodynamic Design Optimisation ‘toy’ problem

What happen if uncertainty in the shape of the airfoil is introduced?
Additional 20 uncertain variables, z.
100 Monte Carlo Samples.





min
w

Cd (w, z)
subject to:

Cl = 0.5
t/c = 0.12
XTRLOW ≤ 0.95c
TEA ≥ 13◦
LER ≥ 0.007c
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Aerodynamic Design Optimisation ‘toy’ problem

NACA 2412: Probability �0.7 of having an increase of Cd w.r.t nominal value.
Deterministic Optimum: A small change in shape is detrimental for the airfoil
performance (huge increase of CVaR) → Reliability Based Optimisation!

min
w∈W ⊆Rn

CVaR0.9 (Cd(w, z) + P(w, z))

Robust Optimum:
- Improve upper tail w/o deteriorating the lower.
- 99 times more computationally expensive! → Reduce CPU time!
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Efficient use of risk measures

Sophisticate risk functions may require a very dense sampling and, hence, may result to
be computationally intensive

Sometimes importance sampling may be strategic to reduce the number of samples at an
acceptable level.

Stochastic collocation and surrogate modeling may also be very useful.

Here we explore the effect on the efficiency of the risk function calculation process by
choosing in a targeted (and deterministic) way the sample on which the risk function is
calculated.

D. Quagliarella (CIRA) Intrusive/non-intrusive approx. for efficient RDO December 14, 2022 14 / 39



Aerodynamic Design Problem
Robust Aerodynamic Design of a Blended Wing Body (BWB) aircraft central section.

Design flow conditions
Parameters Values
Mach 0.8
Reynolds 173.52× 106

Lref 33.5 m
AoA -2.86°
CL 0.10

Airfoil geometric characteristics
Parameters Values
t/c 0.16
Leading Edge Radius (LER) 0.0156
Trailing Edge Angle (TEA) 27.57°
t/c at 85% chord (TAT) 0.083

Note: baseline configuration is a deterministically optimized
airfoil with a constraint on the pitching stability behaviour.
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Airfoil Shape Parameterization

y(s) = k

(
y0(s) +

n∑

i=1

wi yi (s)

)
+

m∑

j=1

Ujzj (s),

x(s) = x0(s),

zj (s) = sin3
(
πx

log 0.5
log sbj

)
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Geometrical and Operational Uncertainties

The uncertainty of the wing shape is represented by a uniform random perturbation Uj
that is added to the current shape functions.
The uncertainties in the operational parameters Mach and AoA are modelled as four
parameter beta distribution.

f (y ;α, β) = γ(α + β)(y)α−1(1− y)β−1

γ(α)γ(β)

y = (x − loc)/scale

Mach:
α=2, β=2,
scale=0.04, loc=0.78
AoA:
α=2, β=2,
scale=0.30, loc=-0.15

Uncertainty Range Distribution
Mach, M [0.78 , 0.82] BETA
Angle of Attack, ∆α [−0.15◦, 0.15◦] BETA
Geometry, Uj [−0.0007 , 0.0007] , j = 1, . . . , 12 UNIFORM
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Numerical analysis tools

Automatic grid generation for RANS analysis (∼ 160000 cells)

Wake
Boundary layer

Shock waves
Corner points

X

Y

Z X

Y

Z

Finite volumes CFD RANS analysis

“Spalart-Allmaras” model
II order Monotone Upstream-Centered Scheme for Conservation Law
Adaptive CFL number
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Deterministic Design Optimization Problem

Transonic airfoil section design. Drag reduction with geometric and aerodynamic
constraints: 




min
w

Cd (w)
subject to:

t% = 16.00
LER ≥ 0.00781
TEA ≥ 22◦
TAT ≥ 0.06658
Cl = 0.1;
Cm ≥ 0.01
Cm ≤ 0.02
error = 0
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Deterministic Design Optimisation Problem

The penalty approach is used to account for constraints:

min
w∈W⊆Rn

Cd (w) + P(w)

with
P(x) = k1p+(LER, 0.00781)+

k2p+(TEA, 22.0◦) + k3p+(TAT, 0.06658)+
k4p+(Cm, 0.01) + k4p−(Cm, 0.02) + k5p+(error, 0)

All the constraints except those regarding the lift coefficient and the maximum airfoil thickness
to chord ratio are quadratic penalties:

p+(x , y) =
{

0 if x ≥ y
(x − y)2 if x < y and p−(x , y) =

{
(x − y)2 if x ≥ y
0 if x < y
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Robust Optimization Problem Setup

The introduction of the random variables causes a functional dependence in the QoI, which is
now a function of functions. The CVaR risk function, at confidence level set to 0.9, is used to
map the QoI into R.

min
w∈W⊆Rn

CVaR0.9 (Cd (w, z)) + P(w)

We are interested in evaluating the impact of random perturbations only on drag force, so
constraints are computed at the nominal values of the design parameters, without taking into
account the effects of uncertainties.
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Gradient Based ECDF approximation — Intrusive if Adjoint is used

Strategy:
RANS adjoint solution returns the gradients of the QoI w.r.t the uncertainty variables
almost at the cost of one RANS flow solution.
A linear approximation of the QoI is built by means of the extracted gradients.
Empirical Cumulative Distribution Function (ECDF) is calculated.
CVaR is estimated.
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Computational Model Chain - QoI approximation

CFD ADJOINT ANALYSIS MODULE

Discrete Adjoint
run 

Objective Function
Gradients 

Objective Function

Fixed Cl run
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Geometrical Uncertainties

discrete-adjoint
finite differences

QoI linear approximation:

q(z) ≈ q(z0) +
n∑

i=1

∂q(z0)
∂z(i)

(
z(i) − z(i)

0

)

where z is the vector of the uncertain variables: z = [M,∆α,Uj ] (airfoil robust design).
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CDF and CVaR comparison of baseline and optimal solution
ECDF based on gradient approximation are estimated with 1000 samples during optimisation.
True ECDF are obtained using 120 samples in the result analysis phase.

A remarkable improvement of the upper tail is
obtained, while a deterioration of the lower tail is
avoided (advantage w.r.t classical approaches
based on µ and σ).
Despite a shift of the approximated solution, the
trend of the true ECDF is captured, therefore the
approximated CVaR0.9 is perfectly usable for
robust optimisation.
Confidence Intervals (CI) calculated with
Bootstrap technique. 0.95
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OPTIMUM True ECDF

Approx. Grad. ECDF True ECDF
CVaR0.9 CI low CI up CVaR0.9 CI low CI up

Baseline airfoil 0.0347 0.0343 0.0351 0.0375 0.0368 0.0380
Robust optimized airfoil 0.0327 0.0324 0.0330 0.0358 0.0344 0.0368
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CVaR approximation through Gaussian Processes — non intrusive

The regression method based on Gaussian processes was used to derive an
approximation of the empirical cumulative distribution function (ECDF) for the QoI (the
cd in these benchmark cases).

After that, the statistics of interest, such as mean and standard deviation, are
calculated from the approximation of the ECDF obtained with the GPs.

The approach based on Gaussian processes is here implemented in a very simple way,
without resorting to sophisticated techniques such as sparse Gaussian processes or
adaptive sampling.
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Gaussian Processes
A Gaussian process defines a distribution of functions p(f ), with f : X 7→ R, such that by
taking any finite number of random variable samples, {x1, . . . , xn} ⊂ X , the marginal
distribution over that finite subset p(f) = p({f (x1), . . . , f (xn)}) is a multivariate Gaussian
probability distribution.
The process is completely defined by specifying a mean function µ(x) and a covariance
function, or kernel, K (xi , xj ; θ), where θ is a vector of parameters that can be learned from
data to obtain regression.
The covariance function here used has the following form:

K (xi , xj ; θ) = ν1 exp


−1

2
∑L
`=1

(
x (`)

i − x (`)
j

)2

r 2
`




+ν2 + δijN(xi ; θ)

with x (`) the `-th component of vector x. The vector of hyperparameters is given by
θ = {ν1, ν2, r1, . . . , rL} and N defines the noise model
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Algorithm coding
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Optimisation algorithms

GP training → simple Genetic Algorithm (GA)

Generations Population Crossover triggering probability [%] Bit-mutation [%]
#1 16 120 100 2.4
#2 30 240 80 1.2
#3 150 240 80 1.2
#4 200 240 80 1.2

The GA uses a Bit string encoding with Gray code.
The Crossover operator is the classical one-point binary with given triggering probability.
Bit-mutation: probability of changing the state of a single bit.

Robust optimisation run → Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)

Maximum evaluations Population size Initial standard deviation
801 8 0.02
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Preliminary GP Training

PURPOSE: characterization of the deterministic solution robustness.
Monte Carlo sampling of the uncertain variables → ECDF with 120 Hi-Fi samples.
The GA encodes the selection of 5 elements extracted from the Hi-Fi ECDF.
The GP constructs a response surface using these 5 elements and generates an
approximated ECDF with a 1000 Monte Carlo samples.
The objective function is the distance of this approximated ECDF from the original one.
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Gaussian Process approximator adaptive refinement

CVaR is not always well approximated → introduce the minimisation of the
difference between CVaRs computed with MC sample and CVaRs computed with GP
(CVaR) as a new term in the objective function for the training phase.
Small error in CVaR estimation with GP → lead to the overturning of the order
relationship: e.g Monte Carlo sampling indicates CVaR1 < CVaR2 and the GP
approximation CVaR1 > CVaR2. IMPORTANT for OPTIMISATION!
Introduce a penalty term → Consider the set of pairs (CVaR,CVaR) and reorder so that
CVaRi ≤ CVaRi−1

Ptset = w
n∑

i=2
1C
(
CVaRi > CVaRi−1

)

1C (x) :=
{

1 if x ∈ C ,
0 if x /∈ C ,
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Example of iterative optimisation process

Step 1 — Preliminary GP training: baseline ECDF.
Step 2 — First robust optimisation run
Step 3 — Gaussian Process retraining: 4 ECDF training set.
Step 4 — Second robust optimisation run
Step 5 — Third Gaussian Process retraining: 5 ECDF training set.
Step 6 — Third robust optimisation run
Step 7 — Fourth Gaussian Process retraining: 6 ECDF training set.
Step 8 — Fourth robust optimisation run
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Final Gaussian Process retraining/refinement
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Final Robust Optimisation Run

Two phases: the first in which optimization is stagnant. The second in which the
optimizer find an exploitable direction in the optimization process.
ECDFs show an optimal agreement.
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Final Robust Optimisation Run

The improvement calculated on the Hi-Fi distribution is
10% and the predicted improvement with the
approximation is 12%.

Solution ID Distance CVaR CVaR penalty term
R1 #34 0.0029011 0.03821 0.03832 −
Baseline 0.0012991 0.03805 0.03810 0
R1 #7 0.0024264 0.03785 0.03748 0
R3 - Best∗ 0.0014308 0.03774 0.03608 0
R1 #108 0.0019234 0.03612 0.03579 0
R3 - Best 0.0008803 0.03550 0.03575 0
R2 - Best 0.0008981 0.03519 0.03460 0
R4 - Best 0.0005761 0.03420 0.03341 0
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Hybrid Algorithm → intrusive + non-intrusive
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Hybrid Algorithm → intrusive + non-intrusive
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Hybrid Algorithm → intrusive + non-intrusive
Evolution History
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Conclusions

A robust optimisation approach based on CVaR can be successfully employed for
aerodynamic design problems of industrial interest.
The CVaR introduces the possibility of working asymmetrically on the ECDF: improving
the upper tail without a deterioration of the lower.
Both intrusive and non-intrusive approaches demonstrated their effectiveness for
computational load reduction.
The presented hybrid algorithm shows good potential for further reducing the
computational load without deteriorating the quality of the approximation.
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Thank you for your attention!
Any question?
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