Reshaping the future of aircraft design

Emiliano Costa Industrial Design & CAE RINA Consulting S.p.A

December 14th 2017, Rome

RBF4AERO Overview rbf4aeroFSI solver: implementation and test case Exploitation initiatives (Fortissimo 2 | Experiment n. 906) What's next....

RINA Consulting is an **Italian engineering consulting company**

Offices in **21 countries**

Revenue is more than **160M Euro** (forecast 2017)

Personnel: about **1700**

Sectors: Oil & Gas, Power Generation, Transmission & Distribution, Renewables & Sustainability, Materials, Technology & Innovation (MTI), Space & Defense, Transport & Infrastructure

<u>Challenge</u>

To develop **cross-platform** and **cross-solver** tools and methodologies for **CAE-based design** in the **aviation sector**, in order to **free** the user from the compromise between the contrasting targets of **speed**, **accuracy** and **extent**.

<u>Objectives</u>

- to reduce (up to 80% for specific applications) the aerodynamic design process duration;
- to make feasible some applications (e.g. FSI) even with high-fidelity models.

PROJECT OVERVIEW

The **RBF4AERD** (<u>www.rbf4aero.eu</u>) project aimed at developing an integrated numerical platform and **methodology** to efficiently face the most demanding challenges of **aircrafts design** and **optimization**.

The project ended on 31^{st} August 2016 after **3** years with Total EC Funding of ≈ 2.4 M& (global costs ≈ 3.5 M&).

The Consortium is composed by **9 partners** from **5 countries** and **RINA Consulting** (formerly D'Appolonia) was the **project coordinator** and **UTV** the technical leader.

Solution

The basic idea is to make the **numerical model parametric** through the use of a mesh **morphing technique** founded on radial basis functions (**RBF**) mathematical framework.

<u>Core technology</u>

RBF mesh morphing is the core technology of the **RBF4AERO** platform which is based on the **integration** of pre-existing numerical tools developed by consortium partners (e.g. Morpher Tool).

RBF are a class of mathematical **interpolation functions**. In **CAE** applications, such functions can be used to drive **mesh morphing** (smoothing) of computational nodes applying predefined displacements to **source points**.

The **RBF4AERO** platform allows to carry out:

- MOD/MDD using EA (evolutionary algorithms) with DoE sampling + metamodel;
- CFD optimizations through adjoint-morphing coupling (adjoint preview and sculpting);
- icing simulation (constrained and on-the-fly);
- FSI (two-way and mode-superposition in EA-Opt).

RBF4AERO platform testing / validation / verification:

- Numerical testing: <u>18 numerical test cases</u> ranging from NACA airfoil to real aircraft were studied and optimised
- Numerical validation: aero-elastic numerical procedures for static FSI were validated
- Experimental verification: <u>3 numerical test cases</u> (low-pressure turbine, turbine internal cooling and contra-rotating ducted rotors) were also <u>verified</u> <u>by experiments</u>

PROJECT OVERVIEW

RBF4AERO promo video

RBF4AERDFSI IMPLEMENTATION

rbf4aeroFSI is one of the features implemented and managed by the RBF4AERO platform.

It consistis of an **EA-based optimization** (see figure) in which the elasticity (**FSI module**) of deformable components is accounted in each design point (DP).

The **EA-based optimization** is assisted by **metamodels** trained on data collected during the **Design-of-Experiment** (DoE) phase and supported by the **Response Surface Models** (RSM) that reduces the number of evaluation tool calls.

Two approaches for **FSI**, envisaged to be implemented in the Project, were validated on the **HIRENASD** model deeply investigated in **NASA** aero-elastic prediction workshop (**AePW**):

- Two-way: the exchange of data between the CSM (via pressure mapping) and CFD model (via morphing) is iterated until convergence is achieved;
- Modal superposition: structure modes are imported into the CFD model using the morpher tool so that it is made "elastic" (morphing). FSI cycles run until convergence is achieved.

Main features / characteristics:

- Cross-solver
- Highly automated numerical processes
- Parallel computing
- RBF are used for mapping CFD loads (twoway) and to morph the CFD model.

The HIRENASD model of the aero-elastic prediction workshop (**AePW**) was selected to accomplish the validation of **both FSI approaches**.

High-fidelity (extensively tested) models made available by the AePW committee were used.

Wind tunnel model

Test n. 132

Parameter	Value	Units
Mach	0.8005	-
Reynolds	6.999999	-
Velocity	256.5	m s ⁻¹
Density	1.22	kg m ⁻³
Static pressure	89289	Pa
Static temperature	246.9	К
ΑοΑ	1.5	-

<u>CFD model</u>: **SU2** and **ANSYS Fluent** were used and an hybrid mesh with about 1.5 million of mixed cells was employed.

<u>FEM model</u>: **ANSYS APDL** solver was used to calculate deformations (2W) and natural frequencies and modes (MS) starting from the import of the FEM model in NASTRAN format.

CFD and CSM models

Mode-superposition (MS): wing modes were extracted with the CSM model and used to prepare RBF shape modifications.

Mode 1 - 25.5 Hz

Mode 3 – 106.1 Hz

Mode 5 – 241.9 Hz

Mode 2 - 80.2 Hz

Mode 4 –160.3 Hz

Mode 6 – 252.2 Hz

Morphed configuration corresponding to mode 1 and 2

Mode-superposition

Preview of the source points before and after morphing (Mode 1)

Fixed source points and delimiting domain source points

Two-way (2W): RBF shape modification to morph the CFD mesh is set up by defining a 'fixed' RBF solution that has to be updated with displacement obtained with the FEM analysis at each FSI cycle.

Surface element of the FEM model that host the CFD loads

Source points of the constrained solution

<u>**RBF4AERDFSI IMPLEMENTATIDN**</u>

The validation has been performed taking into account the **data available** in scientific literature that are:

- pressure coefficient distribution at four monitoring stations located at 14.5% (Section 1), 32.3% (Section 2), 65.5% (Section 6) and 95.3% (Section 7) of the total wing span;
- maximum displacement of the trailing edge in proximity of the wing tip.

Monitoring stations chosen to carry out the FSI validation

Aeroelastic convergence

Mode-superposition

Two-way

Wing displacement

Profile of the vertical displacement of the monitoring point

RBF4AERDFSI IMPLEMENTATION

test cases results | fsi validation

90% time saved in the pre-processing phase wrt a parametric hexa-block approach.66% time saved for each FSI cycle wrt a hybrid mesh approach.

-0.8 -0.6 -0.6 -0.4 -0.4 -0.4 -0.4 -0.2 -0.3 -0.2 -0.2 ð 8 ð 0.2 0.2 0.2 0.7 0.4 0.4 0.4 0.4 EXP EXP EXP EXP 0.6 0.6 -RBF4AERO - MS 0.6 0.6 BRE44ERO - MS -RBF4AERO - MS RBF4AERO - 2W RRF4AFRO - 2W 0.8 RBF4AERO - 2W 0.8 0.8 0.8 x/c x/c

Numerical-experimental comparison: SU2 + ANSY Fluent solver (2W)

Section 1

Section 6

Numerical-experimental comparison: SU2 solver (2W+MS)

Solver: EA-based + FSI (rbf4aeroFSI)

<u>FSI approach</u>: mode-superposition <u>FEM</u>: Abaqus FEA (5 modes)

<u>CFD</u>: OpenFOAM

<u>Boundaries</u>: incompressible, SA turbulence, 2300 and 2550 RPM (MRF)

<u>Modifications</u>: pitch and twist of the blade

<u>Target</u>: Propeller efficiency \vee (thrust, velocity and power) maximization in **cruise** and **take-off** conditions (MOO)

 $F(t,p) = \frac{1}{2}v_{CRUISE} + \frac{1}{2}v_{TAKE-OFF}$ where $v = \frac{TV}{P}$

<u>Constraints</u>: Surface deformations limited to a determined area.

WATTsUP propeller

Propeller modes

Simulation volume and CFD results (baseline)

Blade pitch and twist angles

+3.5% increase of the objective function.

The RBF4AERO platform required more time during the pre-processing phase (33% more) but allowed a substantial reduction of time needed to complete the solution phase (**85% less per DP**).

F(t,p)

Design space

Baseline vs optimal shape

EXPLOITATION INITIATIVES | FORTISSIMO 2

The most important exploitation initiative is the **Experiment 906** of the **FORTISSIMO 2** project termed "**Cross-Solver Cloud-based Tool for Aeronautical FSI Applications**".

<u>Challenge</u>: to showcase the feasibility to carry out an FSI optimization of the winglet of the **Piaggio P180 Avanti EVO** through the RBF4AERO platform on an HPC system.

<u>Objective</u>: we intend to offer one-stop, pay-peruse, on-demand **CAE services** through **Fortissimo Marketplace** with the **RBF4AERO** platform.

https://www.fortissimoproject.eu/it/experiments/906 FINA CONSULTING

We are working to **consolidate** the RBF4AERO platform and establish a **cloud-based solution** to offer CAE services.

We are establishing a **business agreement** to rule the pave the way to business and technological development.

We are open to undertake other initiatives such as **industrial consulting activities** and **research collaborations**.

- Biancolini, M. E., C. Groth, E. Costa, F. Lagasco, "A Mesh Morphing Based Technique to Efficiently Perform FSI Analyses for Aeroelastic Design Applications", Italian Association of Aeronautics and Astronautics, XXII Conference, Napoli, 9-12 September 2013.
- Bernaschi, M., A. Sabellico, G. Urso, E. Costa, S. Porziani, F. Lagasco, C. Groth, U. Cella, M.E. Biancolini, D.H. Kapsoulis, V.G. Asouti, K.C. Giannakoglou, "THE RBF4AERO BENCHMARK TECHNOLOGY PLATFORM", ECCOMAS Congress 2016 - VII European Congress on Computational Methods in Applied Sciences and Engineering.
- Kapsoulis, D.H., V.G. Asouti, K.C. Giannakoglou, S. Porziani, E. Costa, C. Groth, U. Cella and M.E. Biancolini, "EVOLUTIONARY AERODYNAMIC SHAPE OPTIMIZATION THROUGH THE RBF4AERO PLATFORM", ECCOMAS Congress 2016 - VII European Congress on Computational Methods in Applied Sciences and Engineering.
- Costa, E., M. E. Biancolini, C. Groth, G. Travostino, G. D'Agostini, "Reliable Mesh Morphing Approach to Handle Icing Simulations on Complex Models", Proceedings of the 4th EASN Association International Workshop on Flight Physics and Aircraft Design, 27-29 October 2014, Aachen, Germany.
- Costa, E., M. E. Biancolini, C. Groth, U. Cella, G. Veble, M. Andrejasic, "RBF-Based Aerodynamic Optimization of an Industrial Glider", International CAE Conference, 27-28 October 2014, Verona, Italy.
- Andrejašic, M., D. Eržen, E. Costa, S. Porziani, M.E. Biancolini, and C. Groth, "A MESH MORPHING BASED FSI METHOD USED IN AERONAUTICAL OPTIMIZATION APPLICATIONS", ECCOMAS Congress 2016 - VII European Congress on Computational Methods in Applied Sciences and Engineering.
- Papoutsis-Kiachagias, E.M., M. Andrejasic, S. Porziani, C. Groth, D. Erzen, M.E. Biancolini, E. Costa, and K.C. Giannakoglou, "COMBINING AN RBF-BASED MORPHER WITH CONTINUOUS ADJOINT FOR LOW-SPEED AERONAUTICAL OPTIMIZATION APPLICATIONS", ECCOMAS Congress 2016 - VII European Congress on Computational Methods in Applied Sciences and Engineering

- Biancolini, M.E., E. Costa, U. Cella, C. Groth, G. Veble, "Glider Fuselage-Wing Junction Optimization using CFD and RBF Mesh Morphing", Aircraft Engineering and Aerospace Technology journal. DOI: 10.1108/AEAT-12-2014-0211.R1
- Papoutsis-Kiachagias, E.M., S. Porziani, G. Groth, M.E. Biancolini, E. Costa, K.C. Giannakoglou, "Aerodynamic Optimization of Car Shapes using the Continuous Adjoint Method and an RBF Morpher", EUROGEN-2015 - International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems, 14-16 September 2015, Glasgow, UK.
- Firat Kiyici, Sefa Yilmazturk, Ercan Arican, Kahraman Çoban, Emiliano Costa, Stefano Porziani, "U-turn Optimization of a Ribbed Turbine Blade Cooling Channel Using a Meshless Optimization Technique", AIAA SciTech Forum 2017, 9–13 January 2017, Gaylord Texan, Grapevine, Texas (US).
- Firat Kiyici, Tolga Yasa, Emiliano Costa, Stefano Porziani, "Optimization of Transonic Low Pressure Turbine Blade using Mesh Morphing", Anadolu University Journal of Science and Technology and Applied Sciences and Engineering
- Firat Kiyici, Sefa Yilmazturk, Kahraman Çoban, Ercan Arican, Emiliano Costa, Stefano Porziani, "Rib Cross Section Optimization of a Ribbed Turbine Internal Cooling Channel with Experimental Validation", Proceedings of ASME Turbo Expo 2017: Turbine Technical Conference and Exposition, June 26-30, 2017, Charlotte, NC, USA.
- E.M. Papoutsis-Kiachagias, K.C. Giannakoglou, S. Porziani, C. Groth, M.E. Biancolini, E. Costa, M. Andrejasic, "Combining an OpenFDAM-based Adjoint Solver with RBF Morphing for Shape Optimization Problems on the RBF4AERO Platform", OpenFDAM® Selected papers of the 11th Workshop, Springer International Publishing, ISBN: 978-3-319-60846-4

ANY QUESTION?

Contacts:

Emiliano Costa, PhD <u>emiliano.costa@rina.org</u> <u>https://www.researchgate.net/profile/E_Costa</u>

RINA Consulting S.p.A. rinaconsulting@rina.org www.rinaconsulting.org

