FLEXIBLE ENGINEERING TOWARD GREEN AIRCRAFT

CAE tools for sustainable mobility

December 14, 9.00 - 14.00 University of Rome "Tor Vergata", Aula Convegni Ingegneria via del Politecnico 1, Rome

Aeroelastic Experimental measurements on the RIBES wing

Clean Sku

Università di Roma

Tor Vergata

F. Nicolosi

University of Naples «Federico II»

Dep. of Industrial Engineering

fabrnico@unina.it

Design of Aircraft and Flight technologies RESEARCH GROUP www.daf.unina.it

DAF (Design of Aircraft and Flight Technologies)

research group

- Focused on Aircraft Design
- Applied aerodynamics and aerodynamic design of transport aircraft
- Wind-Tunnel tests
- Flight Mechanics and performance
- Flight Dynamics, flight tests and flight simulation

Prof. F. Nicolosi Prof. A. De Marco Prof. P. Della Vecchia Ing. S. Corcione (Post- Doc), Ing. D. Ciliberti (Post-Doc) Ing. V. Cusati (PHD stud) Ing. M. Ruocco (PHD stud) Ing. V. Trifari (PHD stud) Ing. L. Stingo (PHD stud)

Design of Aircraft and

Flight Technologies

DIPARTIMENTO DI

INGEGNERIA

INDUSTRIALE

Aircraft applied aerodynamics and aerodynamic design

USE and development of different tools:

- CFD Navier-Stokes analysis
- Panel method
- Vortex lattice
- L1,5 procedures

Component design and optimization

- 2-D airfoil optimization
- Wing optimization
- Winglet
- Fairing and karman
- Control surfaces
- Distributed propulsion

CFD Analysis of Transport Aircraft

Aircraft Design and Flight Mechanics

Wind-Tunnel tests

- Design of wind-tunnel models
- Test article instrumentation
- Wind tunnel instrumentation
- (i.e. visualization)
- Numerical-Experimental comparison

TESTS

- 3-D scaled model
- Semi-model
- 2-D airfoil tests
- Helicopter (no rotor)
- ⇒ About 20 airfoils tested (10 designed at UNINA for light aircraft and windturbine applications)
- \Rightarrow Since 1996 30 aircraft models tested

Flight Tests and flight simulation

- Flight tests certification
- Performance Estimation and tests
- System identification
- Flight qualities
- Set-up of the flight simulation model

APPLICATIONS:

- Flight tests of P92 and P96 (Tecnam)
- Flight tests and VLA certification of G97 Spotter (2000-2004)
- Flight tests and VLA certification of P2000 RG (Tecnam)
- Flight tests and certification of P2006T
- Support for Oma-Sud Sky Car
- Flight tests of P2008

Design of the wing model for RIBES wind-tunnel tests

Wing span b	1.60 m
Root chord c _{root}	0.6 m
Taper ratio TR	0.7
Aft spar position % of chord	20 %
Rear spar position % of chord	65 %
Airfoil	GOE 398
Material	AL2024T3 alluminum alloy

	Baia N.1 200typ	Baia N.2	Baia N.3	Baia N.4	Baia N.5	Baia N.6	Baia N.7	Baia N.8
Þ								
			S 5	16	0.0	, <u>,</u>	I	

DIPARTIMENTO DI

INGEGNERIA

INDUSTRIALE

First machined rib and tubular rod attachment for model a. of a. reg.

•n. 800 (eight hundred) rivets cherry max (see Section 4.4 and 4.5)

DIPARTIMENTO DI

INDUSTRIALE

- •n.6 (six) linchpins of 4.8 mm AN type
- •n.6 (six) nuts of 4.8 mm MS210442 or equivalent type
- •n.2 (two) linchpins of 7.92 mm e n.2 (two) nuts to join front spar to the 1st ribs.
- •n.2 (two) linchpins of 4.8 mm e n.2 (two) nuts to join rear spar to the 1st ribs.

	20.92					
NAM E ID	SECT	y(mm	η		Chord(N. Pressure
					m)	taps
Α	1	160		0.100	0.582	4
В	2	450		0.281	0.549	4
С	3	600		0.375	0.533	38
D	4	990		0.619	0.488	4
E	5	1200		0.750	0.465	26
F	6	1600		0.938	0.431	4
					Total	80

Tubes outer diameter is 2 mm Tubes inner diameter is 1 mm Tubes do not coincide with rivets and ribs Tubes go through ribs and spars holes

11

Strain gauges

					1000	
D	Bay	POSITION	INSTALLATION	ти		
1	1	between rib1-rib2	front spar	UN	-	
2	1	between rib1-rib2	front spar	UN 10		10
3	1	between rib1-rib2	rear spar	UN		<
4	1	between rib1-rib2	rear spar	UN		
5	3	between rib3-rib4	front spar	UN		
6	3	between rib3-rib4	front spar	UN		A
7	3	between rib3-rib4	rear spar	UN		
8	3	between rib3-rib4	rear spar	UN	- 193	
9	5	between rib5-rib6	front spar	UN		
10	5	between rib5-rib6	front spar	UN		10
11	5	between rib5-rib6	rear spar	UN		1000
12	5	between rib5-rib6	rear spar	UN		-
13	1	between rib1-rib2	front spar thickening	UN		
14	1	between rib1-rib2	front spar thickening	UN		
15	1	1stbay, between 1st and 2nd stringer	Skin	UNIDIRECTIONAL	39.5	0.025
16	1	1stbay, between 2nd and 3rd stringer	Skin	UNIDIRECTIONAL	39.5	0.025
17	2	2ndbay, between 1st and 2nd stringer	Skin	UNIDIRECTIONAL	170	0.106
18	2	2ndbay, between 2nd and 3rd stringer	Skin	UNIDIRECTIONAL	170	0.106
19	1	between rib1-rib2	front spar	ROSETTE- 3SIGNAL	39.5	0.025

DIPARTIMENTO DI

INGEGNERIA

UNINA Low-speed wind-tunnel facility

Type: closed circuit-closed test section Test section dimensions : 2.0 m x 1.4 m Maximum speed : about 160 Km/h (45 m/s) Turbulence level : 0.1% Temperature range : 10-50 °C

Speed range : 5-45 m/s Reynolds number : 1 - 2 mil. For airfoil 2-D tests. Usually about 0.9 - 1.0 mil. For 3D model tests (chord of about 0.25 m) Dynamic Pressure : 15 - 1200 Pa Stagnation pressure : Dyn press + ambient pressure (about 103500 Pa + q = 104700 Pa)

DIPARTIMENTO DI

INGEGNERIA INDUSTRIALE

Component	R	ange	Accuracy
	Min	Max	
Normal force (Lift) L	-80 Kg	100 Kg	0.030 Kg
Horizontal force (Drag) D	-12 Kg	12 Kg	0.005 Kg
Pitching moment My	-15 Kg*m	15 Kg*m	0.010 Kg*m
Bending moment Mfl	-40 Kg*m	60 Kg*m	0.030 Kg*m
Yawing moment Myaw	-8 Kg*m	8 Kg*m	0.006 Kg*m

S=0.815 m² model reference area (planform area)
c : model reference chord (mean aerodynamic chord, c =0.5153 m

Wind-Tunnel corrections Upwash and streamline curvature

$$\Delta \alpha = (1 + \tau_{2w}) \cdot \delta \cdot \left(\frac{S}{A_{wt}}\right) \cdot CL \qquad \alpha_{cor} = \alpha_g + \Delta \alpha$$
$$\tau_{2w} = 0.18 \qquad \delta = 0.61$$

The correction is proportional to the developed lift and lift coefficient.

The correction to be applied is positive, it means that with a certain geometrical angle of attack, the effective corrected angle of attack will be slightly higher.

At an angle of attack of about 6° and a lift coefficient of about 0.80 (CL=0.80), the correction is about 1°, it means that the effective angle of attack is 7°.

Solid and wake blockage

Due to the model solid blockage, and due to the wake blockage the dynamic pressure around the model will be increased by a factor that in this case is around 1.013.

That means :

 $q_{cor}/q=1.013$ or $q/q_{cor}=0.987$

$$CL_{cor} = CL^{*}(q/q_{cor})$$
$$CD_{cor} = CD^{*}(q/q_{cor})$$
$$CM_{cor} = CM^{*}(q/q_{cor})$$

 $\Delta CD = \Delta \alpha \cdot CL - \Delta CD_{wake_blockage}$

$$CD_{cor} = CD \cdot \left(\frac{q}{q_{cor}}\right) + \Delta\alpha \cdot CL - \Delta CD_{wake_blockage}$$

Pressure measurements

SCANIVALVE 128 channel electronic pressure measurement system

- Accuracy (about 3 Pa)
- Very Fast
- Unsteady measurements

TEST MATRIX PLANNED and COVERED

Name	flow speed	Reynold	s	Measurements and Conditions	
Oil	30 m/s	1.06 mill.		Flow vis with fluorescent oil at several a of att	
			CLEAN	I Conditions	
TEST L30) 30 m/s	1.06 mill.		Full polar (up to stall) free transition L, D, M, Cp	
TEST L35	5 35 m/s	1.25 mill.		(Up to 10°) polar free trans. L, D, M, Cp	
TEST L40) 40 m/s	1.43 mill.		Limited (up to 8°) polar free trans. L, D, M, Cp	
			TURB	ULENT Conditions(b.l. tripped at l.e)	
TEST 7/8	3/13 35 m/	s 1.06		Tests at 35 m/s and repeatability check (L,D,M)	
TEST T3) 30 m/s	1.06 mill.		Full polar fixed trans 1-2% L, D, M, Cp, strain	
TEST T3	5 35 m/s	1.25 mill.		Full polar fixed trans 1-2% L, D, M, Cp, strain	
TEST T4	0 40 m/s	1.43 mill.		Limited polar fixed trans 1-2% L, D, M, Cp, strain	
TEST F28	8 Var spee	d	Var	a=4°& 6° fixed trans 1-2% L, D, M, Cp, strain	
Model deformation measurement through LASER					
TEST Da	6 40 m/s	1.43 mill.		a=6°, L=60.3Kgf fixed trans 1-2%	

L, D, M, strain, Model deformation

TEST RESULTS, FLUORESCENT OIL VISUALIZATION

The clean model installed in the wind-tunnel has been covered with some fluorescent oil in several section along the span.

Some paper strip has been placed close to station C (y=600 mm) and station E (y=1200 mm) to highlight with pictures the accurate measurement of the position of the laminar separation bubble, both in terms of curvilinear abscissa (in [mm]) and in terms of fraction of local chord.

-1.5

-1

-0.5

0

0.5

0.1

Ср

Section F

Section £

Section 4

Section £

Section 2

Section 1

Paper indication

TEST RESULTS, FLUORESCENT OIL VISUALIZATION

Alpha (geometrical) = 2°, V=30 m/s

Alpha (geometrical) = 4°, V=30 m/s

SECTION CD , upper surface

Alpha (geometrical) = 8°, V=30 m/s

SECTION CD, upper surface

DIPARTIMENTO DI

INGEGNERIA

INDUSTRIALE

Alpha (geometrical) = 10° , V=30 m/s sec CD

Design of Aircraft and

Flight Technologies

Alpha (geometrical) = 12° , V=30 m/s sec CD

LS (Laminar separation) : TR (Turbulent reattachment) s [mm] 17 mm 30 mm x/c (local fraction of chord) 0.016 (1.6%) 0.040 (4%)

DIPARTIMENTO DI

INGEGNERIA

INDUSTRIALE

Design of Aircraft and

Flight Technologies

2 layers, about 0.4 mm 3 layers, about 0.6 mm

3 Layers is better

Alpha=12°, section CD

TEST L30, V=30 m/s Clean Model , Forces and Moments

TEST L30, V=30 m/s Clean Model , corrected and non-corrected coefficients

Flexible Enginnering Toward Green Aircraft, University of Rome "Tor Vergata", 14th December, 2017

TEST T30, V=30 m/s Turbulent b.l.

Design of Aircraft and Flight Technologies

TEST T35 and T40 Turbulent b.l. LOADS CONDITIONS

TEST F28, V=variable, alpha=4°, Turbulent b.l.

FORCE MEAUREMENT – Comparison with CFD prediction

CLEAN Conditions

TEST L3030 m/s1.06 mill. Full polar (up to stall) free transitionL, D, M, CpTEST L3535 m/s1.25 mill. (Alpha=0-10°) polar free trans.L, D, M, CpTEST L4040 m/s1.43 mill. Limited (up to 8°) polar free trans.L, D, M, Cp

TURBULENT Conditions(b.l. tripped at l.e)

TEST T30 30 m/s 1.06 mill. Full polar fixed trans 1-2% L, D, M, Cp, strain
TEST T35 35 m/s 1.25 mill. Full polar fixed trans 1-2% L, D, M, Cp, strain
TEST T40 40 m/s 1.43 mill. Limited polar fixed trans 1-2% L, D, M, Cp, strain

TEST L30, V=30 m/s Clean Model

TEST L30, V=30 m/s Clean Model

TEST L30, V=30 m/s Clean Model

TEST T30, V=30 m/s Turbulent

TEST T30, V=30 m/s Turbulent

TEST RESULTS. Pressure measurements

TEST T40, V=40 m/s Turbulent

COMPARISON section C

COMPARISON section C

ID Bay POSITION

2 3

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18

19

1 between rib1-rib2

2 2ndbay, between 1st and 2nd stringer Upper Skin

2 2ndbay, between 2nd and 3rd stringer Upper Skin

front spar

TEST RESULTS. Strain and stress measurement

							5	11
		INSTALLATION	ТҮРЕ	y (mm)	eta		0	1
INSTALLATION TYPE y (mm) eta	n rib1-rib2	front spar	UNIDIRECTIONAL	35.5	0.025	-	/	1
INSTALLATION TYPE y (mm) eta front spar UNIDIRECTIONAL 35.5 0.025	een rib1-rib2	front spar	UNIDIRECTIONAL	35.5	0.025	19	/	P
INSTALLATION TYPE y (mm) eta front spar UNIDIRECTIONAL 35.5 0.025 front spar UNIDIRECTIONAL 35.5 0.025	tween rib1-rib2	rear spar	UNIDIRECTIONAL	35.5	0.025	1000		1
INSTALLATION TYPE y (mm) eta front spar UNIDIRECTIONAL 35.5 0.025 front spar UNIDIRECTIONAL 35.5 0.025 rear spar UNIDIRECTIONAL 35.5 0.025	tween rib1-rib2	rear spar	UNIDIRECTIONAL	35.5	0.025		14	1
INSTALLATION TYPE y (mm) eta front spar UNIDIRECTIONAL 35.5 0.025 front spar UNIDIRECTIONAL 35.5 0.025 rear spar UNIDIRECTIONAL 35.5 0.025 rear spar UNIDIRECTIONAL 35.5 0.025 rear spar UNIDIRECTIONAL 35.5 0.025	tween rib3-rib4	front spar	UNIDIRECTIONAL	310	0.194			2
INSTALLATIONTYPEy (mm) etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194	etween rib3-rib4	front spar	UNIDIRECTIONAL	310	0.194			1.00
INSTALLATIONTYPEy (mm) etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194	between rib3-rib4	rear spar	UNIDIRECTIONAL	297	0.194			
INSTALLATIONTYPEy (mm) etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194	etween rib3-rib4	rear spar	UNIDIRECTIONAL	297	0.194			
INSTALLATIONTYPEy (mm) etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194rear sparUNIDIRECTIONAL2970.194	between rib5-rib6	front spar	UNIDIRECTIONAL	600	0.391			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391	between rib5-rib6	front spar	UNIDIRECTIONAL	600	0.391			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391	between rib5-rib6	rear spar	UNIDIRECTIONAL	598	0.391			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391front sparUNIDIRECTIONAL6000.391front sparUNIDIRECTIONAL5980.391	between rib5-rib6	rear spar	UNIDIRECTIONAL	598	0.391			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391front sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391	between rib1-rib2	front spar thickening	UNIDIRECTIONAL	35.5	0.025			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391front sparUNIDIRECTIONAL6000.391rear sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391front spar thickeningUNIDIRECTIONAL35.50.025	between rib1-rib2	front spar thickening	UNIDIRECTIONAL	35.5	0.025			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL2970.194rear sparUNIDIRECTIONAL2970.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391front sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391front spar thickeningUNIDIRECTIONAL35.50.025front spar thickeningUNIDIRECTIONAL35.50.025	1stbay, between 1st and 2nd stringer	Upper Skin	UNIDIRECTIONAL	35.5	0.025			
INSTALLATIONTYPEy (mm)etafront sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025rear sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL35.50.025front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL3100.194front sparUNIDIRECTIONAL2970.194rear sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL2970.194front sparUNIDIRECTIONAL6000.391front sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391rear sparUNIDIRECTIONAL5980.391front spar thickeningUNIDIRECTIONAL35.50.025front spar thickeningUNIDIRECTIONAL35.50.025front spar thickeningUNIDIRECTIONAL35.50.025front spar thickeningUNIDIRECTIONAL35.50.025d 2nd stringerUpper SkinUNIDIRECTIONAL35.50.025	1stbay, correspondence to UD N.15	Lower Skin	ROSETTE-3SIGNAL	35.5	0.025			

169 0.106

169 0.106

35.5 0.025

Flexible Enginnering Toward Green Aircraft, University of Rome "Tor Vergata", 14th December, 2017

UNIDIRECTIONAL

ROSETTE-3SIGNAL

ROSETTE-3SIGNAL

TEST RESULTS. Strain and stress measurement

TEST RESULTS. Strain and stress measurement

Strain and stress measurement TEST T40, V=40 m/s , Fully turbulent

	Measur	ed Force	es and M	oments				
						Mycb= My-		
Alfa_cor	N	Mfl	Yaw	Yaw_root	D	My_tara	Mypolo	Mfl root
[*]	[kg]	[kgm]	[kgm]	[kg*m]	[Kg]	[kg*m]	[kg*m]	Kg m
-1.940	6.839	6.181	1.115	0.915	1.195	-2.279	-2.479	5.039
-0.850	13.536	12.042	1.039	0.849	1.137	-2.018	-2.441	9.782
0.250	20.370	17.941	1.049	0.857	1.151	-1.746	-2.395	14.540
0.360	20.989	18.470	1.043	0.852	1.143	-1.690	-2.360	14.964
1.490	27.873	24.419	1.145	0.938	1.241	-1.362	-2.257	19.765
2.590	34.378	30.105	1.321	1.085	1.413	-1.085	-2.192	24.364
3.700	41.261	36.209	1.577	1.298	1.670	-0.736	-2.066	29.318
4.750	46.616	41.015	1.819	1.496	1.929	-0.453	-1.954	33.230
5.880	54.178	47.827	2.192	1.794	2.384	-0.069	-1.810	38.779
6.920	59.420	52.519	2.436	1.975	2.761	0.244	-1.663	42.596
8.120	67.153	59.259	2.686	2.117	3.404	0.685	-1.463	48.044

Design of Aircraft and

TEST RESULTS. Strain and stress measurement V=40 m/s – Stress for different alpha (loads)

Design of Aircraft and

Flight Technologies

Design of Aircraft and

Flight Technologies

TEST RESULTS. Strain and stress measurement, alpha=4°, V=variable

TEST RESULTS. Strain and stress measurement , design condition V=40 m/s N=60 Kg

TEST RESULTS. Strain and stress measurement , design condition V=40 m/s N=60 Kg

	FEM	Experimental
Strain gauge n.5 (front spar upper	-16 Mpa	-17.5 Mpa
cap @ y=300 mm)		
Strain gauge n.6 (front spar lower	+15 MPa	18.2 MPa
cap @ y=300 mm)		

	FEM	Experimental	
Strain gauge n.9 (front spar upper	-10 Mpa	-12.2 Mpa	
cap @ y=600 mm)			
Strain gauge n.10 (front spar	+11 MPa 12.3 MPa		
lower cap @ y=600 mm)			

TEST RESULTS. Deformation measurement V=40 m/s, alpha_g=6°, alpha_c= 7° N=60 Kg

Design of Aircraft and Flight Technologies

TEST RESULTS. Deformation measurement V=40 m/s, alpha_g=6°, alpha_c= 7° N=60 Kg

Highly accurate tilt sensor On the wing root

Measure model rotation @ root

TEST RESULTS. Deformation measurement

V=40 m/s, alpha_g=6°, alpha_c= 7° N=60 Kg

				•				Shift	
						Vertical root		due to	
				Root		displacement	Total	only	
	У		Normal	Inclinom	LASER	(micro-meter	vertical	Root	
MARK	[mm]	v	Force	Midori	Measurem	comparator)	shift	ROT	Deformation
		[m/s]	[Kgf]	[deg]	[mm]	[mm]	[mm]	[mm]	[mm]
11	1585	39.20	60.3	1.45	50.00	3.594	43.70	40.10	6.30
10	1398	39.20	60.3	1.45	44.00	3.590	38.96	35.37	5.04
9	1204	39.20	60.3	1.45	37.8	3.590	34.05	30.46	3.75
8	1055	39.20	60.3	1.45	33.30	3.590	30.28	26.69	3.02
7	909	39.20	60.3	1.45	28.90	3.590	26.59	23.00	2.31
6	755	39.20	60.3	1.45	24.40	3.590	22.69	19.10	1.71
5	600	39.20	60.3	1.45	20.00	3.590	18.77	15.18	1.23
4	462	39.20	60.3	1.45	16.00	3.590	15.28	11.69	0.72
3	324	39.20	60.3	1.45	12.20	3.590	11.79	8.20	0.41
2	178	39.20	60.3	1.45	8.25	3.590	8.09	4.50	0.16
1	35	39.20	60.3	1.45		3.590	4.48	0.89	

From measurements of point 11 and 11P(Posteriore) at different chord position, also the torsion at wing tip has been measured:

The torsional deformation at wing tip has been measured and is equal to 0.82 deg. (positive, twist up).

TEST RESULTS. Deformation measurement V=40 m/s, alpha_g=6°, alpha_c= 7° N=60 Kg

TEST RESULTS. Visualization with tufts

TEST RESULTS. Visualization with tufts

CONCLUSIONS

- Model design and building
- Force and pressure measurement
- Only small discrepancies at l.e. in a section
- Good comparison with numerical results

Further considerations (concerning stress and deformation) :

- It is difficult with a typical airplane structure and small dimensions to:
 - have very accurate reproduction of shape (especially at l.e.)
 - ensure reasonable deformations (especially torsional)
- Difficult to model constraint at root with connections through bolts