High Fidelity FSI analysis methods and their validation within the EU RIBES project

Ubaldo Cella

Flexible Engineering

Rome 14 December 2017

R I B E S

Radial basis functions at fluid Interface Boundaries to Envelope flow results for advanced Structural analysis

Programme: Clean sky joint undertaking **Topic**: Green Regional Aircraft

Objectives of RIBES

- Development of a load mapping procedure for 2 ways FSI analysis tools
- Definition of an aeroelastic experimental campaign
- Development of a structural optimization procedure

Partners

Università di Roma

Welcome to the World of Fast Morphing!

UniversiTà degli STudi di Napoli Federico II

Aerospace Engineering - www.designmethods.aero

High fidelity FSI analyses

FEM CFD ALCOLOUGH &

2 ways FSI procedure

Load mapping problem

Load mapping errors

HiReNASD

% errors on forces resultants components

% ERROR	R× [N]	RY [N]	Rz [N]
NO CORRECTION	47.3%	6.6%	1.0%
RIBES CORRECTION	0%	0%	0%

% errors on moments resultants components

% ERROR	M× [Nm]	М ^ү [Nm]	Mz [Nm]
NO CORRECTION	13.1%	13.8%	27.8%
RIBES CORRECTION	0.8%	0.11%	0.38%

Mesh morphing

RBF for mesh morphing

- Radial Basis Functions (RBF) can be used to drive mesh morphing (smoothing) from a list of source points and their displacements.
 - Surface shape changes (exact nodes control)
 - Volume mesh smoothing.
- RBF are recognized to be one of the **best mathematical tool** for mesh morphing.

RBF mesh morphing

- Main advantages
 - No re-meshing
 - Can handle any kind of mesh
 - Can be integrated in the CFD solver
 - Highly parallelizable
 - Robust process
- Main disadvantage
 - Computationally expensive (HPC for large grids)

RBF Morph tool

- Setup
 - Select fixed and moving walls by source points
 - Prescribe the displacements (or a combination of)
- Fitting
 - Solving the RBF system and storing the solution
- Smoothing
 - Application of the morphing action on surfaces and volume

Morphing Preview (A=0)

www.rbf-morph.com

Modal approach for FSI

Parametric mesh formulation

Advantages and limits

- Main advantages
 - simpler numerical environments respect 2-way
 - Higher robustness
 - Mesh adaptation during computation (faster solution)
- Limits
 - Linear problems only (small displacements)
 - Uncertainness on the modal base dimension

RIBES wing

RIBES

Critical points of design

- Structural similitude with a full scale wing
 - Impracticable manufacturing
- Conflicting high deformation requirement
 - Relatively higher thickness and lower loads
 - Difficult to load the spars and unload the skin

Panels stability was the main design driver

Final test article details

Span = 1.6 m Material = AL2024T3 (Yeld Stress = 270 Mpa, Ultimate stress = 440 Mpa)

Load distribution

Alpha = 6 deg V = 40 m/s Lift = 67 Kg

Pressure taps installation

Strain gauges installation

Model under construction

Measured geometry

model measured by **HEXAGON metrology electronic harm**

measured

Effects on aerodynamics

CAD reconstruction

Free flight CFD domain

C-H structured 3.2 mill. Hexa, farfield at 50 MAC

Structural model

97000 shell elements

RBF problem domain

31000 source points, (fitting in 62 sec., smoothing in 40 sec.)

Aerodynamic solutions

Modal base evaluation

Deformation measurement

High-precision inclinometer

Deformation solutions

Modal coordinate

Elements junction

Spar reinforcements

Conclusions

- RBF morphing provide a very efficient and robust coupling of CFD and FEM solutions
- 2-way and modal FSI analyses provided almost the same solutions
 - the modal approach is a valid candidate to setup efficient and accurate FSI analyses of wings
 - A very poorly populated modal base us sufficient for lifting surfaces
- Failure in modeling the load shared between skin and spar.
 - A more accurate FEM model is probably necessary for complex topologies including root junctions

Thank you for your attention

Ubaldo Cella