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Summary I

A robust optimization task was carried out, related to the Natural
laminar Flow (NLF) design of a supersonic business jet

The reference configuration is the deterministically optimized
wingbody shape produced by CIRA within the SUPERTRAC EU
project

The objective is to obtain a new reliable design which offers a better
behavior with respect to the uncertainties in operating conditions,
wing-body shape and numerical performance prediction models

The results presented here deal with the robust optimization of the
baseline configuration with respect to uncertainties in the wing shape

D. Quagliarella, E. Iuliano (CIRA) RAD of a Supersonic Wing-Body for NLF December 14, 2017 3 / 38



Summary II

The optimization framework here introduced is based on the
Value-at-risk (VaR) risk measure, also called quantile, and it was
originally introduced in the area of financial engineering.

Very coarse VaR estimations are used in the optimization process and
the bootstrap computational statistics technique is used to get an
estimate of the standard error on of the risk function.
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UMRIDA UQ Database Test Case IC-08
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Wing body geometric features
Parameters Values

Inboard sweep 65
Outboard sweep 56
Semi-span length 9.35 m
Aspect ratio 3.5
Wing area 50 m2

Design flow conditions
Parameters Values

Mach 1.6
Reynolds 51.8 × 106

Lref 6.27 m
AOA 3.65
CL 0.182
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Optimization Problem

Figure from reference [1].

Increase the extension of the laminar flow region

Keep favorable values for the global aerodynamic coefficients
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Optimization Problem Mathematical Formulation I

The objective function is defined as

G =K
CD + CD,M + CD,L

CL

∼
CL
∼
CD

+

(1− K )
∆xlam
∼

∆x lam
+ `P

(
1− ler

∼
ler

)
+ tP

(
1− tea

∼
tea

)
with contribution to drag due to trim

CD,M = max[0, 0.05(
∼
CM −CM)] CD,L = max[0, 1.0(

∼
CL −CL)]

with
∼
CL and

∼
∆x lam lift coefficient and the laminar extension indicator

related to the baseline, K , `, and t weighting coefficients (here K = 0.25,
` = 100, and t = 100), and P quadratic penalty is activated if its
argument is positive
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Optimization Problem Mathematical Formulation II

∆xlam estimates transition and laminar separation position on the whole
wing

∆xlam =
n∑

i=1

(∆xlu + ∆xll + ∆xsu + ∆xsl)

where
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i
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X
i
tr and X

i
sep are the computed values of transition and separation point

at span section i, X i
tr and X i

sep are the desired values
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Optimization Problem Summary

Design variables
Wing section shape User choice

Design point
Mach number 1.6
Reynolds number 51 millions
Reference chord 6.27 [m]
Altitude 44000 [ft]
Lift coefficient 0.182

Design constraints
Lift coefficient CL ≥ 0.180
Pitching moment CM ≥ −0.05

Trailing edge angle tea ≥
∼
tea= 0.050 [rad]

Leading edge radius lea ≥
∼
lea= 0.0020 [m]

Laminar extent — Suction side Xtr/c = 0.35

Laminar extent — Pressure side Xtr/c = 0.45

Laminar separation Xsep/c = 0.60

Objective
G(CL,CD ,CM , ler , tea,∆xlam) To be minimized
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Computational Model Chain

BL stability (PARAB)

Flow solver (ZEN)
+

BL analysis (BL3D)

N factor value

Transition linePressure coefficient

-0.38-0.16 0.06 0.28 0.50 0.72

Feedback
(second order effect)

Figure from reference [2].
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Uncertainty Sources

Geometrical uncertainties Natural laminar flow is mostly sensitive
to the shape of the leading edge region. This is due to its effect on
pressure coefficient gradient which, in turn, is one of the factors that
have most influence on the transition

Operational uncertainties Operational uncertainties are here the
classical one related to Mach number and lift coefficient (CL)

Model uncertainties (epistemic) One of the challenges that have to
be faced when approaching the numerical design of natural laminar
flow wings is the reliable estimation of the point of transition from
laminar to turbulent flow. A significant uncertainty in the
determination of transition location is inherent to the methods for
numerical transition prediction and in particular to the eN method,
and to the related Ncritical factor

Currently, only geometrical uncertainties are considered in the design loop
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NURBS Based Shape Parameterization

A grid of 21 x 7 NURBS CPs is defined on the whole wing surface

A total number of 21 CPs is used to control the wing leading edge
shape

7 CPs streamwise, 3rd order basis functions
3 CPs spanwise, 2nd order basis functions

Design variables are the vertical displacements of the CPs
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Uncertainty in Shape Description

The uncertainty in the description of the wing shape is represented by
a uniform random perturbation ηi that is added to the current
NURBS control point position
21 design variables and, consequently, 21 shape perturbation
parameters are considered in this problem.

design variable lower bound upper bound random variable lower bound upper bound distribution
y0 -35 -15 η0 -1 1 UNIFORM
y1 -30 -10 η1 -1 1 UNIFORM
y2 -25 -5 η2 -1 1 UNIFORM
y3 -2 3.5 η3 -0.275 0.275 UNIFORM
y4 30 40 η4 -0.5 0.5 UNIFORM
y5 50 90 η5 -2 2 UNIFORM
y6 90 160 η6 -3.5 3.5 UNIFORM
y7 0 20 η7 -1 1 UNIFORM
y8 0 20 η8 -1 1 UNIFORM
y9 0 20 η9 -1 1 UNIFORM
y10 -2 3.5 η10 -0.275 0.275 UNIFORM
y11 5 30 η11 -1.25 1.25 UNIFORM
y12 20 50 η12 -1.5 1.5 UNIFORM
y13 40 80 η13 -2 2 UNIFORM
y14 -20 10 η14 -1.5 1.5 UNIFORM
y15 -20 10 η15 -1.5 1.5 UNIFORM
y16 -20 10 η16 -1.5 1.5 UNIFORM
y17 -2 3.5 η17 -0.275 0.275 UNIFORM
y18 5 30 η18 -1.25 1.25 UNIFORM
y19 10 30 η19 -1 1 UNIFORM
y20 15 50 η20 -1.75 1.75 UNIFORM
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Risk measure

In optimization under uncertainty, inevitably, we have to deal with
random events, modeled by random variables

The first thing to do to treat the problem from a mathematical point
of view, is to agree on a way to measure the risk R(X )

and on a level of risk that we consider acceptable, bearing in mind
that there will inevitably be adverse events

R(X ) ≤ C

If the random variables representative of the costs depend on a
deterministic decision vector, we are led naturally to:

min
x∈S⊆Rn

R0(X0(x)) s. to: Ri (Xi (x)) ≤ ci , i = 1, . . . ,m
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Cumulative Distribution Function
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Figure from reference [2].

CDF gives the area under the probability density function from minus infinity to x .

FX (x) = P(X ≤ x), is the probability that X takes on a value ≤ x .

D. Quagliarella, E. Iuliano (CIRA) RAD of a Supersonic Wing-Body for NLF December 14, 2017 15 / 38



Generalized inverse distribution function
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FX and its inverse QX

0

1

0 1

The inverse quantile or Value-at-Risk (VaR) is one of the risk measures
adopted here, and it can be easily obtained once if the CDF is available.
Let X a random variable and F (y) = Pr{X ≤ y} the CDF of X . Then the
inverse CDF of X can be defined as F−1(γ) = inf{y : F (y) ≥ γ}. For any
α ∈ (0, 1), the α-VaR of X is defined as

να = F−1(α),

It is the maximum loss that can be exceeded only in (1−α)100% of cases.
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Quantile and α-tail

0

1

0 1

The α-CVaR of X can be thought of as the conditional expectation of
losses that exceed the qα level, and can be expressed as

cα =
1

1− α

∫ 1

α
νβdβ
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Quantile (VaR) estimation using the ECDF

If x1, x2, . . . , xn are n independent and identically distributed (i.i.d.)
observations of the random variable X , then the α-VaR of X can be
estimated by

ν̂α;n = Xdnαe:n = F̂−1
n (α)

where Xi :n is the i-th order statistic from the n observations, and

Fn(t) =
n∑

i=1

1{xi ≤ t}

is the empirical CDF constructed from the sequence X̃ of x1, x2, . . . , xn,
1{·} is the indicator function and t is a scalar value
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Superquantile (CVaR) estimation using the ECDF I

cα can also be written as the following stochastic program:

cα = inf
t∈R

{
t +

1

1− α
E [X − t]+

}
with [a]+ = max{0, a}. The set of optimal solutions to the stochastic
program is T = [να, uα] with uα = sup t : F (t) ≤ α. In particular,
να ∈ T , so

cα = να +
1

1− α
E [X − να]+

When X has a positive density in the neighborhood of να, then να = uα.
Therefore, the stochastic program has a unique solution, and

cα = E [X |X ≥ να]

with E [X |X ≥ να] also known as expected shortfall or tail conditional
expectation.
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Superquantile (CVaR) estimation using the ECDF II

In the case where we have a finite number of samples, that is a ECDF, and
X1,X2, . . . ,Xn are n independent and identically distributed (i.i.d.)
observations of the random variable X , then the estimator

ĉα;n = inf
t∈R

{
t +

1

n(1− α)

n∑
i=1

[Xi − t]+

}

is used to estimate the α-CVaR of L. So we easily obtain the direct
estimate of cα:

ĉα;n = ν̂α;n +
1

n(1− α)

n∑
i=1

[Xi − ν̂α;n]+
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Roadmap of the optimization experiments

1 A deterministic GA optimization is performed at first to find an
approximation of the global optimum solution. The choice of using a
genetic algorithm is motivated by its high success rate in solving
similar problems in the recent past;

2 Once a deterministic solution is found, uncertainty is plugged in and
optimization under uncertainty is performed to refine the solution and
improve the response probability tail performances. In this phase,
both the design and the uncertain variables are active: the aim is to
search locally for a robust design solution around the deterministic
optimum. Two algorithms are used for this purpose: the SBLO and
the CMA-ES.
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Deterministic optimization

The GA optimizer minimizes the G function (quantity of interest)

Deterministic GA parameters

Parameter Value

Pop. size 48
Generation no. 100
Bit mutation rate 1%
One-point crossover rate 80%
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Deterministic optimization history
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baseline

Figure from reference [2].

Evolution history after 100 generations
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Comparison of VaR and CVaR curves for different
sampling sizes

0.0
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0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995

CVaR

CVaR 160 samples
CVaR 24 samples
VaR 160 samples

VaR 24 samples

Figure from reference [2].

ECDF are estimated with just 24 samples during optimization

ECDF are obtained using 160 samples in the result analysis phase
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Surrogate-based local optimization

SBLO starts with 24 Latin Hypercube samples in the inner loop for
estimating VaR at α = 0.9. The outer loop employs a Latin
Hypercube sampling of size 48 to feed the surrogate model.

A Kriging surrogate is used with Gaussian correlation functions,
reduced quadratic (i.e., mixed terms are neglected) trend function
and hyper-parameters tuning.

The optimization on the surrogate in the trust region is carried out by
means of an evolutionary algorithm.

A population of 200 individuals is evolved with 100% two-point
crossover rate and 10% normal offset mutation rate. A total number of
20,000 fitness function evaluations is fixed.
The new population is created by introducing 10 best individuals from
the combination of the current population and the newly generated
individuals and randomly selecting the remaining 190 individuals among
the remaining individuals.
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VaR SBLO optimization run

Figure from reference [2].

Evolution history after 33 generations (661 evaluations).
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CVaR CMA-ES optimization run

Conditional-Value-at-Risk response function at α = 0.9 is considered as
the objective function and it is estimated with 24 Monte Carlo samples
during the optimization, while in the post-run analysis 160 samples are
used for validation.

CMA-ES parameters

Parameter Value

Initial σ 0.05
λ 20
µ 10
Max. obj. Evaluations 660
Max. iterations 33
Damping for σ 0.746419
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VaR + SBLO results
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Figure from reference [2].

Comparison of VaR curves with bootstrap c. i. for baseline, deterministic
optimum and VaR-based optimum with SBLO
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VaR + SBLO results
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Figure from reference [2].

Comparison of CVaR curves with bootstrap c. i. for baseline, deterministic
optimum and VaR-based optimum with SBLO
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CVaR + CMA-ES results

0.0

0.2

0.4

0.6

0.8

1.0

0.950 0.960 0.970 0.980 0.990 1.000 1.010 1.020

VaR

baseline
det. opt.

CMAES opt.

Figure from reference [2].

Comparison of VaR curves with bootstrap c. i. for baseline, deterministic
optimum and CVaR-based optimum with CMA-ES
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CVaR + CMA-ES results
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Figure from reference [2].

Comparison of CVaR curves with bootstrap c. i. for baseline, deterministic
optimum and CVaR-based optimum with CMA-ES
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Transition line envelopes for the wing upper surface

baseline
determ. opt.

CMA-ES opt.

Figure from reference [2].
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Transition line envelopes for the wing lower surface

baseline
determ. opt.

CMA-ES opt.

Figure from reference [2].
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Conclusions I

The use of an optimization approach based on VaR and CVaR risk
measures has been successfully employed to solve an aerodynamic
design problem of industrial interest.

The high computational power required by the evaluation of the
objective function has imposed the use of a very rough estimate of
VaR in the optimization process.

The bootstrap analysis, however, has allowed to verify that, despite
the noise produced by the roughness of the estimate, the estimated
value of VaR and CVaR were fairly stable and consistent.

The baseline and optimal solutions obtained in several generations
were then validated using a more refined sampling which, together
with bootstrap analysis for the calculation of confidence intervals,
confirmed the reliability of the solutions obtained through the
optimization process.
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Conclusions II

Further work is needed to enhance the ranking capabilities of the
algorithm near the optimum, as the noise introduced by the
coarseness of the samples could lead to misleading conclusions.

Therefore, it is envisaged to introduce a hierarchy of computational
models of increasing complexity and fidelity as well as advanced
statistical sampling techniques such as importance sampling and
multilevel Monte Carlo methods.

D. Quagliarella, E. Iuliano (CIRA) RAD of a Supersonic Wing-Body for NLF December 14, 2017 36 / 38



References I

Iuliano, E., Quagliarella, D., Donelli, R. S., El Din, I. S., and Arnal, D.

Design of a supersonic natural laminar flow wing-body.

Journal of Aircraft 48(4), 1147–1162 July (2011).

Quagliarella, D. and Iuliano, E.

Robust design of a supersonic natural laminar flow wing-body.

IEEE Computational Intelligence Magazine 12(4), 14–27 Nov (2017).

Quagliarella, D., Petrone, G., and Iaccarino, G.

Optimization under uncertainty using the generalized inverse distribution function.

In Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon,
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The End
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